Space Warfare XIII: The Human Factor
Discussion of the recent post on Interstellar Empire led to a question that until now failed to get a post of its own: the role, in space warfare, of drones versus ships carrying human crews. Consider this deficiency now corrected.
A few provisos apply. Set aside for now the question of whether warfare, as we have known it and too much loved it since the Iliad, may be obsolescent as a viable mode of conflict among post-industrial communities.
Also set aside the Plausible Midfuture, a place where warfare in deep space is doubtful even if Earth orbital space is armed to the teeth. Set aside as well the general messiness of warfare on planets; my concern here is with space combat. We are dealing here with space armadas, a concept that is demi-operatic at least.
Will these armadas be made up primarily of warships with human crews - the familiar classical vision - or largely of robotic craft?
A lot of this comes down, I would argue, to good old money. The first 50 years of deep space exploration have been exclusively robotic because robotic spacecraft are cheaper. They are cheaper for several reasons: They can be much smaller; except for sample returns they don't need to come back; and in fact they don't even need to always get there.
So far as I can recall, every mission to the outer planets has (so far) been a success, but we only reached the point of batting .500 against Mars since I launched this blog. Such a loss rate was regarded as acceptable for human missions in the 16th century, but not in the 21st. (The more so because the enormous cost of human spaceflight, and resulting high profile, makes human spaceflight losses more controversial than, say, helicopter crashes.)
The situation in warfare is somewhat different, because soldiers are in some fundamental sense expendable - many of our military traditions are, in one way or another, built around that fact. But they are not lightly expended, if only because high quality crews are costly to train and difficult to replace. For post-industrial societies, where untimely death is no longer a sad commonplace, public resistance to casualties may be problematic even for authoritarian regimes.
Cost and risk of losses, taken together, are ample reason for the designers of combatant spacecraft to automate them so far as is practical. But how far is practical?
Kinetic weapons will have no human crews, for obvious reasons. There are almost equally strong reasons not to put crews aboard the buses that deliver them. Kinetics are most effective in a single wave that saturates defenses - the faster they are thrown the harder they will hit, and the less time the defense will have to stop them. This argues for a bus that uses its full delta v for maximum closing rate, rather than holding back propellant in order to recover the bus. For its basic mission it need not be very sophisticated, and you will not be re-using it anyway, at least not anytime soon.
So it is probably cheaper to make the bus expendable.
Lasers are a different matter, as are alternatives such as particle beams. (And for that matter kinetics, if these are slung on their way by coilguns. Flip side, bomb-pumped lasers are expendables, with military properties similar to kinetics.) A laser star is inherently reusable, and suited to missions, such as blockade or maintaining a 'presence,' in which repeated engagements may be required. A laser and its associated optics are also presumably sophisticated equipment. On all of these grounds putting a crew aboard a laser star seems much more plausible than putting one aboard a kinetic bus.
But what exactly would the crew be called upon to do? No gunners' mates are needed to shove photons into the breech, or even aim the laser. Actual precision aiming of the beam will be automated in any case, and assigning targets can be done from a few light seconds away.
The other traditional role of ships' crews is maintenance and repair. But drive engines and megawatt lasers do not, so far as I can see, provide much scope for onboard servicing, let alone damage control during battle. Repairs of either one pretty much need the services of a cageworks. Occasional replacement of smaller failed systems, or whacking balky parts with a wrench, can be done by service teams based elsewhere - at a space station, for defensive orbital forces, or aboard a tender for deep space constellations.
It is a peculiar fact that both many space emergencies - such as onboard fires or air leaks - and much of the corresponding scope for human emergency repair, relate specifically to life support habs. (Propellant tanks can also leak, but offer precious little chance of onboard repair.) I suspect, indeed, that life support maintenance will be a major role of space crews. But this sets up an odd circularity. Take away the hab and you eliminate many of the emergencies that a crew could respond to.
The final role for humans in space combat is command and control, especially rules of engagement decisions. We might not want to trust even high level AIs with these decisions - either because we are not quite sure of their motives, or because they have no motives at all, and so can free us of everything but the need to decide. But the scale and probable tempo of space combat are such that - as mentioned above concerning target designation - these functions generally don't need to be aboard the weapon platforms. Why not offload them to the 'tender' that provides teams for the occasional maintenance call?
Back in Part III of this series I gave the following description of a space combat constellation:
Taken as a whole you might call it a fleet. But it more nearly resembles a mobile, distributed, and networked fortification, deploying in action into a three-dimensional array of weapon emplacements, observation posts, and patrol details, all backed up by a command and logistics center.But even supposing that a main battle force is built along these lines, what about smaller independent mission packages - the equivalent of a cruiser, for example, for patrol missions?
Contrary to the (understandable!) assertion of a well known Evil Website, space is not an ocean. At sea, a single 10,000 ton ship has major advantages over four 2500 ton ships. It is more seaworthy, far more comfortable for its crew, harder to sink, provides a higher and dryer command for guns and sensors, and can maintain higher speed with less power and fuel consumption.
In space these considerations apply with far less force, if they apply at all. A single large hab pod is likely preferable to several smaller ones - but only the command ship / tender needs a hab pod at all. And the other force elements can be carried as riders, if desired, separating only to deploy for combat.
If your propulsion tech involves an electric drive powered by an external reactor, which also supplies the primary laser, you want to match the drive, reactor, and laser, which does argue for putting them together aboard the same spacecraft. And you might reasonably be less than comfortable about separating the crew hab from the main drive. But if your setting has fusion drive, or any self-contained drive, this is much less a consideration.
One other human-factor consideration to keep in mind was brought up in the linked discussion by commenter Tony: What happens to the morality of warfare - such as it is - when no soldiers put themselves at risk to fight it, because the fighting is all done by robots?
In the scenario I have outlined above this is not really the case. The constellation has a human crew, aboard the command ship / tender, even if it is 'behind the lines' relative to the weapon platforms. If the combat units of its constellation are defeated the crew must retreat, surrender, or face destruction - the choices that have always faced combatants who were disarmed in battle rather than killed outright.
Discuss.
Related Links:
Atomic Rockets, of course - especially, but not exclusively, the pages on space warfare.
And previously in the Space Warfare series on this blog:
I: The Gravity Well
II: Stealth Reconsidered
III: 'Warships' in Space
IV: Mobility
V: Laser Weapons
VI: Kinetics, Part 1
VII: Kinetics, Part 2 - The Killer Bus
VIII: Orbital Combat
IX: Could Everything We Know Be Wrong?
X: Moving Targets
XI: La Zona Fronteriza
XII: Surface Warfare
Also ...
Battle of the Spherical War Cows: Purple v Green
Further Battles of the Spherical War Cows
Plus
Space Fighters, Not
Space Fighters, Reconsidered?
And, indulging in heresy -
Give Peace a Chance
The image shows Achilles fighting Hector.